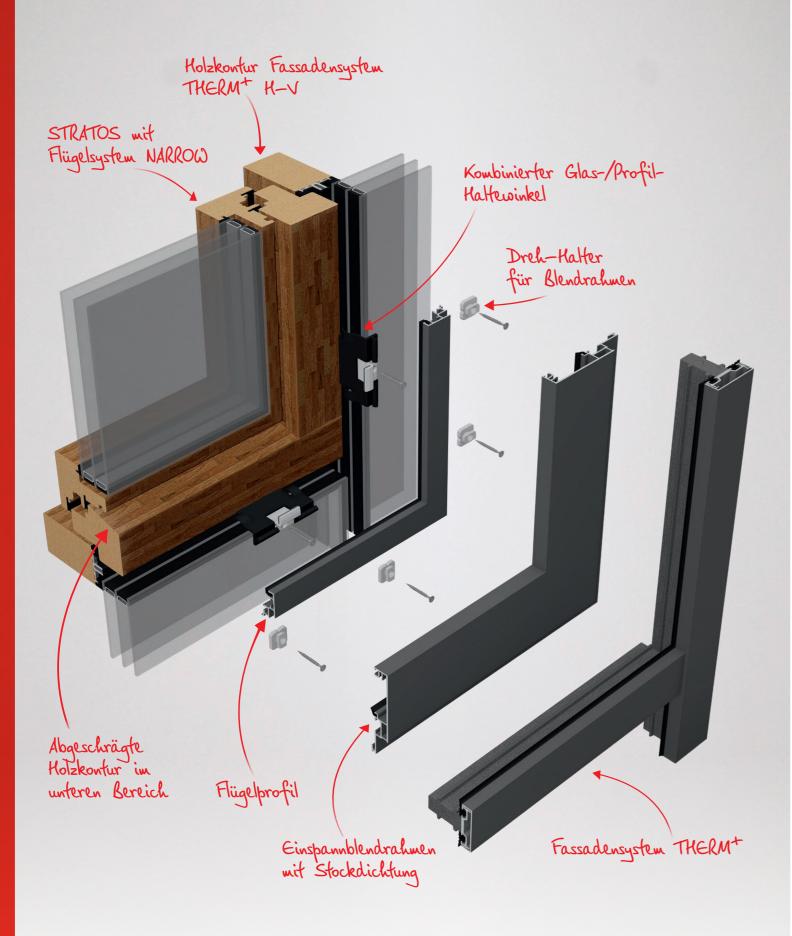
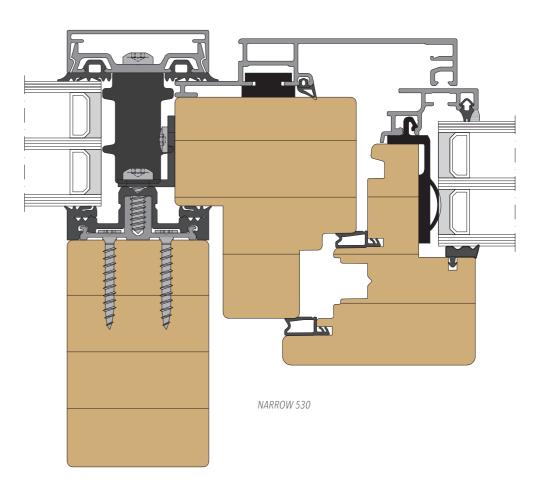

HOLZ ALU FENSTER

Das perfekte Zusammenspiel aus Fenster und Fassade.



INHALTSVERZEICHNIS

für größte Gestaltungsfreiheit Explosionszeichnung und Fassadenschnitt	4
Alles aus einer Hand Produkteigenschaften und Vorteile	6
Darüber hinaus bieten wir Ihnen Der RAICO-Service	9
Die Varianten im Überblick Systemvergleich ECO, STRATOS, PREMIUM	10
System ECO Ausführungsvarianten und Prüfungen	12
System STRATOS Ausführungsvarianten und Prüfungen	14
System PREMIUM Ausführungsvarianten und Prüfungen	16
Türsysteme/Schiebesysteme Ausführungsvarianten	18
Integrierte Brüstungsverglasung Ausführungsvarianten	19
Sonderlösungen Blechbearbeitung Aluminium	20
Fensterbank	21
RAICO Premiumoberflächen	21
Systemvergleich im Detail	22



HOLZ-ALU-FENSTERSYSTEME ...

... FÜR GRÖSSTE GESTALTUNGSFREIHEIT!

Mit den neuen Holz-Aluminium-Fenstersystemen und den bewährten THERM⁺ Fassadensystemen von RAICO haben Sie das perfekte Zusammenspiel aus Fenster und Fassade für Ihr Projekt!

* Hervorragende Produkteigenschaften

- Optimierte Profilgeometrie des Einspannblendrahmens zur Integration in eine Pfosten-Riegel-Fassade.
- Innovatives Holz-Aluminium-Fenster mit äußerer Aluminiumverkleidung der Holzkonstruktion.
- Perfektionierte Geometrie des Flügelrahmens für schlanke
 Ansichtsbreiten
- Die ideale Ergänzung für das bewährte RAICO Fassadensystem THERM⁺.

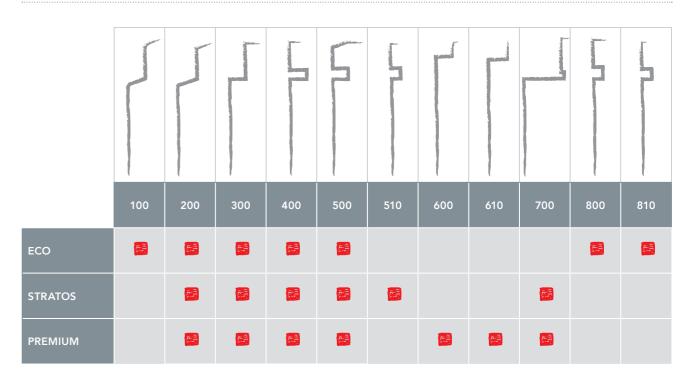
DIE VARIANTEN IM ÜBERBLICK

Eine einzigartige Vielfalt an Holz-Alu-Fenstersystemen.

System ECO

- Optimal integrierbar in Pfosten-/Riegel-Konstruktionen.
- Äußere Blendrahmenanschlagdichtung geschweißt als umlaufender Rahmen lieferbar.
- Für alle Holzdicken lieferbar.
- Glasdicken bis 60 mm abhängig je nach Holzdicke.
- Rahmenverbreiterungen für vielfältige Bauanschlusslösungen.
- System CENTURIO SD rundet das Programm mit einem verdecktliegenden Flügelprofil ab.
- Ausführung mit verdecktliegenden Beschlägen möglich.

System STRATOS


- Optimierte Aluminium-Vorsatzschalen-Konstruktion mit dem Nachweis für hohe Systemsicherheit.
- Systemgeprüfte Lösungen gegen Einbruchschutz nach DIN EN 1627 ff in RC2.
- Profilintegrierte absturzsichernde Verglasung für raumhohe Fensterelemente nach Kategorie A, für Serie 700 (Glasstärke 17,52 mm VSG; im Objektfall auch mit 25,52 mm VSG).
- Für alle Holzdicken lieferbar.
- Rahmenverbreiterungen für vielfältige Bauanschlusslösungen.
- Glasdicken bis 60 mm abhängig je nach Holzdicke.
- Ausführung mit verdecktliegenden Beschlägen möglich.
- System CENTURIO rundet das Programm mit einem verdecktliegenden Flügelprofil ab.

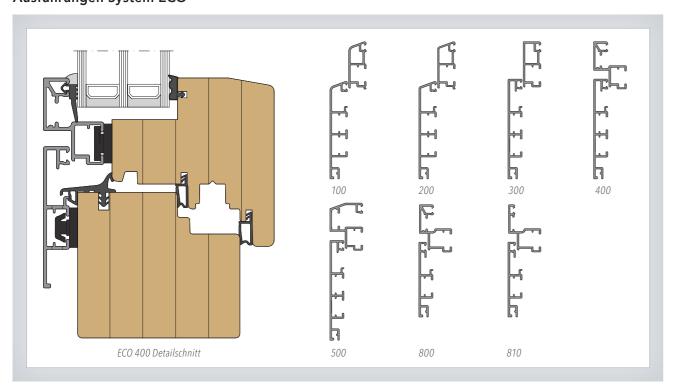
System PREMIUM

- Geschlossene Blendrahmenprofile im Falzbereich sind auch im geöffneten Zustand ein optisches Highlight und zudem in Verbindung mit einer Fensterschiene optimal für Reinigungszwecke geeignet.
- Holz-Alu-Fenstersystem mit optimierter Regenschienen-Konstruktion.
- Profilintegrierte absturzsichernde Verglasung für raumhohe Fensterelemente nach Kategorie A, für Serie 300 und 600 (Glasstärke 17,52 mm VSG) und Serie 700 (Glasstärke 25,52 mm VSG).
- Systemgeprüfte Befestigungstechnik für einfache und schnelle Montage der Alu-Vorsatzschalen.
- Rahmenverbreiterungen für vielfältige Bauanschlusslösungen.
- Für alle Holzdicken lieferbar.
- Ausführung mit verdecktliegenden Beschlägen möglich.
- Glasdicken bis 60 mm abhängig je nach Holzdicke.

Systemvergleich (Detaillierte Tabelle s. S. 22/23)

SYSTEM ECO

Das Basis-System


Das Holz-Alu-System der ersten Stunde. Selbstverständlich stehen Ihnen hier ebenfalls viele Designvarianten zur Verfügung. Die Entwässerung erfolgt hier über eine äußere Blendrahmendichtung.

Umfangreiche Konstruktionsvielfalt:

- verdecktliegende Flügelprofile
- Stulpfenster
- Sprossen-/Kämpferlösungen
- Rolladenführungsprofile und Zubehör

- Eckausbildungen
- Einsatzrahmen in P/R-Fassaden
- Rahmentür mit Schwelle
- barrierefreie Fenstertür, Rundbogenfenster etc.

Ausführungen System ECO

Prüfungen

Wärmedämmung nach DIN EN ISO 10077-2

	*/		V	Veichho	lz λ = 0,1	1				Hartholi	z λ = 0,18	3	
		68	mm¹	78	mm¹	88	mm¹	68	mm¹	78	mm¹	88	mm¹
	8 / 8	U _f =	U _w ² =	U _f =	U _w ² =	U _f =	U _w ² =	U _f =	U _w ² =	U _f =	U _w ² =	U _f =	U _w ² =
ECO 100	U _g 3 0,7 W/m ² K	1,2	0,96	1,1	0,94	1,0	0,91	1,6	1,1	1,5	1,1	1,4	1,0
ECO 100	U _g 4 0,6 W/m ² K	1,2	0,89	1,1	0,86	1,0	0,84	1,5	1,0	1,4	0,99	1,4	0,96
FCO 200	U _g 3 0,7 W/m ² K	1,2	0,96	1,1	0,94	1,0	0,91	1,6	1,1	1,5	1,1	1,4	1,0
ECO 200	U _g 4 0,6 W/m ² K	1,2	0,89	1,1	0,86	1,0	0,84	1,5	1,0	1,4	0,99	1,4	0,96
ECO 300	U _g 3 0,7 W/m ² K	1,2	0,97	1,1	0,94	1,0	0,92	1,6	1,1	1,5	1,1	1,4	1,0
ECO 300	U _g 4 0,6 W/m ² K	1,2	0,90	1,1	0,86	1,0	0,84	1,6	1,0	1,5	0,99	1,4	0,97
ECO 400	U _g 3 0,7 W/m ² K	1,2	0,98	1,1	0,95	1,1	0,93	1,6	1,1	1,5	1,1	1,4	1,1
ECO 400	U _g 4 0,6 W/m ² K	1,2	0,90	1,1	0,87	1,0	0,85	1,6	1,0	1,5	1,0	1,4	0,98
ECO 500	U _g 3 0,7 W/m ² K	1,3	1,0	1,2	0,97	1,1	0,95	1,7	1,1	1,6	1,1	1,5	1,1
ECO 500	U _g 4 0,6 W/m ² K	1,2	0,92	1,2	0,89	1,1	0,87	1,7	1,1	1,6	1,0	1,5	1,0
ECO 800	U _g 3 0,7 W/m ² K	1,3	1,0	1,3	1,0	1,2	0,96	1,8	1,2	1,6	1,1	1,6	1,1
ECO 800	U _g 4 0,6 W/m ² K	1,3	0,93	1,2	0,90	1,1	0,88	1,7	1,1	1,6	1,0	1,5	1,0
ECO 810	U _g 3 0,7 W/m ² K	1,4	1,0	1,3	1,0	1,2	0,98	1,8	1,2	1,7	1,1	1,6	1,1
ECO 810	U _g 4 0,6 W/m ² K	1,3	0,95	1,2	0,91	1,2	0,89	1,8	1,1	1,6	1,1	1,6	1,0

¹ Holzdicke

Leistungseigenschaften*

*	Wärmedämmung EN ISO 10077-2		abhängig von I		ert ≥ 1,0 V ügel-Kom		d Füllun	g (Glas)			
	Schalldämmung EN ISO 140-3; EN ISO 717-1	R,	(C; C _{tr}) = 36 (-1;	: -4) dB / 44	(-2; -4) dE	3, abhängig	von Füll	lung (Gl	as)		
	Luftdurchlässigkeit, EN 1026; EN 12207 Maximaler Prüfdruck (Pa)	1 2 3 4 150 300 600 600									
	Schlagregendichtheit EN 1027; EN 12208	1A	2A	3A	4A	5A	6A	7A	8A	9A	E750
13	Maximaler Prüfdruck (Pa)	0	50	100	150	200	250	300	450	600	750
	Widerstandsfähigkeit	1	2	3		4	!	5		Exxx	
$-\infty$	gegen Windlast,	400	800	1.200		1.600	2.0	000	>	2.00	00
>	EN 12211; EN 12210	/	Α		В				С		
•	Maximaler Prüfdruck (Pa)	Pa) (I/150) (I/200) (I/300)									
7	Einbruchhemmung ENV 1627 – ENV 1630	RC	C 1		RC 2			R	С3		

² Elementgröße: 1.230 x 1.480 mm

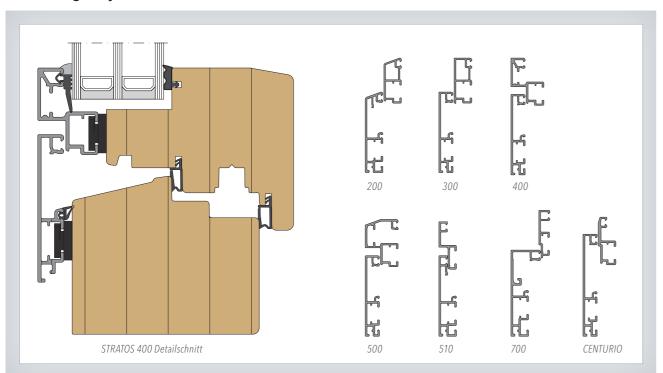
 $^{^3}$ U $_{\rm q}$ Wert: 0,7 W/m 2 K - 3-fach Isolierglas (4/12/4/12/4 - 36 mm); Glasabstandhalter: THERMIX TX.N plus

 $^{^4}$ U $_{\rm q}$ Wert: 0,6 W/m²K - 3-fach Isolierglas (4/16/4/16/4 - 44 mm); Glasabstandhalter: THERMIX TX.N plus

^{*} Werte abhängig von Holzdicke, Flügelgröße und Öffnungsvariante

SYSTEM STRATOS

Das Hightec-System


Sie wünschen die technischen Vorteile des Systems PREMIUM, benötigen jedoch eine günstigere Alternative? Kein Problem. Mit dem System STRATOS sind Sie technisch auf neuestem Stand und überlassen nichts dem Zufall.

Umfangreiche Konstruktionsvielfalt:

- verdecktliegende Flügelprofile
- Stulpfenster
- Sprossen-/Kämpferlösungen
- Rolladenführungsprofile und Zubehör

- Eckausbildungen
- Einsatzrahmen in P/R-Fassaden
- Rahmentür mit Schwelle
- barrierefreie Fenstertür, Rundbogenfenster etc.

Ausführungen System STRATOS

Prüfungen

Wärmedämmung nach DIN EN ISO 10077-2

	* 1		Weichhol	z λ = 0,11			Hartholz
		80	mm¹	90 1	mm¹	1 08	mm¹
	8 / 8	U _f =	U _w ² =	U _f =	U _w ² =	U _f =	U _w ² =
STRATOS 200	U _g 3 0,7 W/m ² K	1,1	0,95	1,1	0,93	1,5	1,1
31RA1O3 200	U _g 4 0,6 W/m ² K	1,1	0,87	1,0	0,85	1,5	1,0
STRATOS 300	U _g ³ 0,7 W/m ² K	1,1	0,95	1,1	0,93	1,5	1,1
31RA1O3 300	U _g 4 0,6 W/m ² K	1,1	0,87	1,0	0,85	1,5	1,0
STRATOS 400	U _g 3 0,7 W/m ² K	1,1	0,95	1,1	0,93	1,5	1,1
31RA1O3 400	U _g 4 0,6 W/m ² K	1,1	0,88	1,0	0,85	1,5	1,0
STRATOS 500	U _g 3 0,7 W/m ² K	1,1	0,95	1,1	0,93	1,5	1,1
31KA1O3 500	U _g 4 0,6 W/m ² K	1,1	0,88	1,0	0,85	1,5	1,0
STRATOS 510	U _g 3 0,7 W/m ² K	1,3	1,0	1,2	0,97	1,7	1,2
31KA103 310	U _g 4 0,6 W/m ² K	1,2	0,92	1,2	0,89	1,7	1,1
CENTURIO	U _g 3 0,7 W/m ² K	1,2	0,98	1,1	0,95	1,6	1,1
CENTURIO	U _g ⁴ 0,6 W/m ² K	1,2	0,90	1,1	0,87	1,6	1,0

¹ Holzdicke

Leistungseigenschaften*

*	Wärmedämmung EN ISO 10077-2		abhängig von		ert ≥ 1,0 \ lügel-Kon		d Füllunç	g (Glas)			
	Schalldämmung EN ISO 140-3; EN ISO 717-1	R	_v (C; C _{tr}) = 36 (-1;	-4) dB / 44	(-2; -4) d	B, abhängig	von Füll	ung (Gl	as)		
	Luftdurchlässigkeit, EN 1026; EN 12207 Maximaler Prüfdruck (Pa)	15	1 50		2 300			3 600			
	Schlagregendichtheit EN 1027; EN 12208	1A	2A	3A	4A	5A	6A	7A	8A	9A	E750
13	Maximaler Prüfdruck (Pa)	0	50	100	150	200	250	300	450	600	750
21	Widerstandsfähigkeit gegen Windlast,	1 400	2 800	3 4 1,200 1,600		•	5 2.000		Exxx > 2.000		
	EN 12211; EN 12210 Maximaler Prüfdruck (Pa)		A 50)		B (I/200)		C (I/300)				
	Einbruchhemmung ENV 1627 – ENV 1630	RC 1 RC 2 RC 3									

^{*} Werte abhängig von Holzdicke, Flügelgröße und Öffnungsvariante

90 mm¹

 $U_f =$ 1,5

1,4

1,5

1,4 1,5

1,4

1,5

1,4

1,6

1,6

1,5

1,5

 $U_{w}^{2} =$

1,1

0,98

1,1 0,98

1,1

0,99

1,1

0,99 1,1

1,0

1,1

1,0

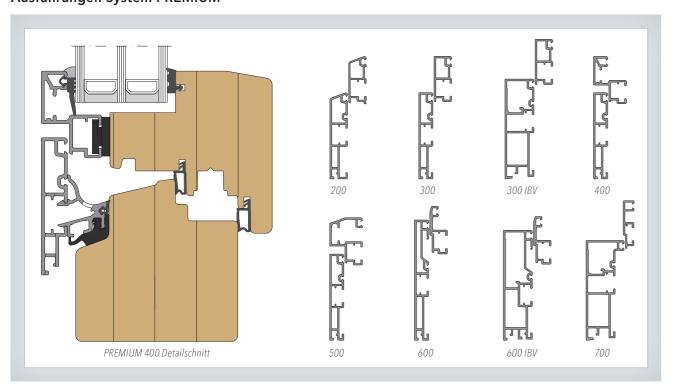
² Elementgröße: 1.230 x 1.480 mm

 $^{^3}$ U Wert: 0,7 W/m²K – 3-fach Isolierglas (4/12/4/12/4 - 36 mm); Glasabstandhalter: THERMIX TX.N plus

⁴ U_a Wert: 0,6 W/m²K – 3-fach Isolierglas (4/16/4/16/4 - 44 mm); Glasabstandhalter: THERMIX TX.N plus

SYSTEM PREMIUM

Das Deluxe-System


Architekten und Bauherren mit höchsten Ansprüchen setzen auf das System PREMIUM. Das Fenster, das auch im geöffneten Zustand eine einzigartig schöne Optik bietet. Neben dem eleganten Design überzeugt dieses System durch die technisch hohe Systemsicherheit.

Umfangreiche Konstruktionsvielfalt:

- verdecktliegende Flügelprofile
- Stulpfenster
- Sprossen-/Kämpferlösungen
- Rolladenführungsprofile und Zubehör

- Eckausbildungen
- Einsatzrahmen in P/R-Fassaden
- Rahmentür mit Schwelle
- barrierefreie Fenstertür, Rundbogenfenster etc.

Ausführungen System PREMIUM

Prüfungen

Wärmedämmung nach DIN EN ISO 10077-2

	* 1		Weichhol	z λ = 0,11		П		Hartholz	λ
		78 ו	mm¹	88 1	mm¹		78 r	mm¹	
	8 / 8	$U_f =$	U _w ² =	U _f =	U _w ² =		$U_f =$	U _w ² =	
PREMIUM 200	U _g 3 0,7 W/m ² K	1,1	0,96	1,1	0,93		1,6	1,1	
PREIVITOIVI 200	U _g 4 0,6 W/m ² K	1,1	0,88	1,0	0,86		1,5	1,0	
PREMIUM 300	U _g 3 0,7 W/m ² K	1,2	0,96	1,1	0,93		1,6	1,1	
PREIVITOIVI 300	U _g 4 0,6 W/m2K	1,1	0,88	1,0	0,86		1,5	1,0	
PREMIUM 400	U _g 3 0,7 W/m ² K	1,3	1,0	1,2	0,97		1,7	1,1	
FREINIIOINI 400	U _g 4 0,6 W/m ² K	1,2	0,91	1,1	0,89		1,6	1,1	
PREMIUM 500	U _g 3 0,7 W/m ² K	1,1	0,96	1,1	0,93		1,6	1,1	
PREIVITOIVI 500	U _g 4 0,6 W/m ² K	1,1	0,88	1,0	0,86		1,5	1,0	
PREMIUM 600	U _g 3 0,7 W/m ² K	1,2	0,98	1,2	0,96		1,6	1,1	
PREIVITOIVI 600	U _g 4 0,6 W/m ² K	1,2	0,91	1,1	0,88		1,6	1,0	
PREMIUM 700	U _g 3 0,7 W/m ² K	1,1	0,96	1,1	0,93		1,5	1,1	
PREIVITOIVI 700	U _g ⁴ 0,6 W/m ² K	1,1	0,88	1,0	0,86		1,5	1,0	

Holzdicke

Leistungseigenschaften*

***************************************	Wärmedämmung EN ISO 10077-2		abhängig von f		ert ≥ 1,0 lügel-Kor		d Füllun	g (Glas)			
[(b))	Schalldämmung EN ISO 140-3; EN ISO 717-1	R	_v (C; C _{tr}) = 36 (-1;	; -4) dB / 44	l (-2; -4) c	B, abhängig	von Füll	ung (Gl	as)		
	Luftdurchlässigkeit, EN 1026; EN 12207 Maximaler Prüfdruck (Pa)	15	1			60		4 600			
	Schlagregendichtheit EN 1027; EN 12208	1A	2A	3A	4A	5A	6A	7A	8A	9A	E750
No.	Maximaler Prüfdruck (Pa)	0	50	100	150	200	250	300	450	600	750
21	Widerstandsfähigkeit gegen Windlast,	1 400	2 800	3 4 1,200 1,600		4 1.600	5 2.000		Exxx > 2.000		
	EN 12211; EN 12210 Maximaler Prüfdruck (Pa)		A 50)		B (I/200)		C (I/300)				
	Einbruchhemmung ENV 1627 – ENV 1630	RC 1 RC 2 RC 3									

^{*} Werte abhängig von Holzdicke, Flügelgröße und Öffnungsvariante

88 mm¹

 $U_f =$ 1,5

1,4

1,5

1,4

1,6 1,5

1,5

1,4

1,5

1,5

1,4

1,4

 $U_{w}^{2} =$

1,1

0,99

1,1

0,99 1,1

1,0

1,1

0,99

1,1

1,0

1,1

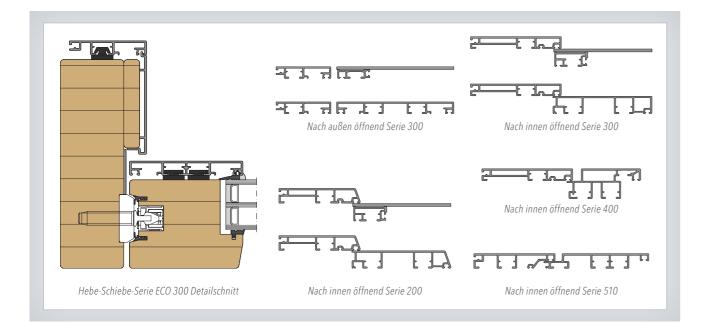
0,99

² Elementgröße: 1.230 x 1.480 mm

³ U_a Wert: 0,7 W/m²K – 3-fach Isolierglas (4/12/4/12/4 - 36 mm); Glasabstandhalter: THERMIX TX.N plus

⁴ U_a Wert: 0,6 W/m²K – 3-fach Isolierglas (4/16/4/16/4 - 44 mm); Glasabstandhalter: THERMIX TX.N plus

TÜRSYSTEME / SCHIEBESYSTEME


Die Visitenkarte des Hauses

Im Bereich der Haustüre stellen Sie besonders hohe Anforderungen. Überlassen Sie nichts dem Zufall – ein speziell für Haustüren entwickeltes Holz-Alu-System. Schiebe-Elemente stehen ebenfalls umfangreich zur Verfügung, wie z. B. Panorama-Lösungen ohne Festverglasungsflügel.

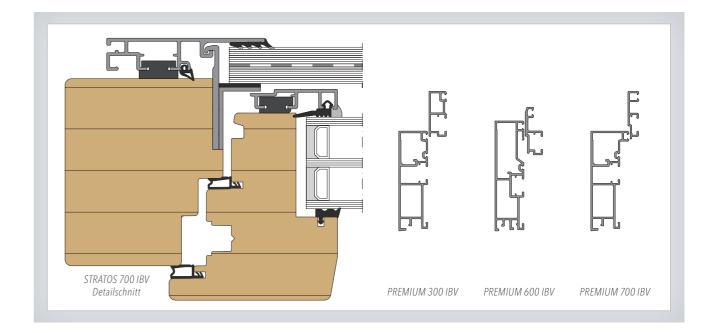
Umfangreiche Konstruktionsvielfalt:

- Innovatives Holz-Alu-Premiumtürsystem, flächenbündige oder flächenversetzte Flügellösungen.
- Aluminium-Vorsatzschalen in geschweißter und mechanischer Eckverbindung möglich.
- Umfangreiche individuelle Flächenbearbeitung an Türblättern mit modernsten Maschinen.
- Geschlossene Blendrahmenprofile im Falzbereich sind auch im geöffneten Zustand ein optisches Highlight
- und zudem in Verbindung mit einer Fensterschiene optimal für Reinigungszwecke geeignet.
- Nach außen öffnende Türsysteme mit optimierten Edelstahlrollenbändern.
- Hebe-Schiebe-Systeme für großflächige Öffnungselemente.
- Panoramalösung als festverglasungsfreie Konstruktion.
- Verglasung von außen in Rahmenbauweise möglich.

INTEGRIERTE BRÜSTUNGSVERGLASUNG (IBV)

Safety first!

Profil integrierte absturzsichernde Brüstungsverglasungen erfreuen sich bei moderner Architektur steigender Beliebtheit. Unsere Systemlösungen erfüllen alle architektonisch hochwertigen Ansprüche im Bereich Holz-Alu-Fensterelemente.


Umfangreiche Konstruktionsvielfalt:

- Profilintegrierte, transparente Absturzsicherung für raumhohe Fensterelemente – optisch unschlagbar.
- Beschattungen aller Art können wie gewohnt ohne weitere Zusatzmaßnahmen zum Einsatz kommen.
- Stabile unsichtbare Befestigung der Aluminium-Vorsatzschale und der Brüstungsverglasung.
- Für Holz-Alu-Fenstersysteme STRATOS und PREMIUM
- Ebenfalls bei verdecktliegenden Flügelprofilen möglich.

Mit abP für Pfosten-Riegel- und abP für Holz-Alu-Fenstersystem verfügbar; Typenstatik nach DIN 18008-4 vorhanden; Zulässige Abmessungen nach Kategorie A:

Gla	saufbau	17,52 r	mm:	Glasaufbau 25,52 mm:										
VSG 2x	8 mm (ES	G), 1,52	mm PVB	B VSG 2x12 mm (ESG), 1,52 mm										
Breite	e (mm)	Höhe	(mm)	Breite (mm)		Höhe (mm)								
min.	max.	min.	max	min.	max.	min.	max							
700	1.600	400	beliebig	590	2.000	280	beliebia							

Glas- und Foliendicken dürfen überschritten werden, anstelle von ESG darf ESG-H eingesetzt werden.

RAICO

SONDERLÖSUNGEN

Fassade + Fenster + Fensterbank = Eine Einheit!

Moderne Architektur erfordert umfangreiche Sonderlösungen. Ihre Wünsche integrieren wir in ein System, denn Ihr Objekt soll kein Versuchs-Objekt werden.

System NARROW

- Flügelserie NARROW für schlanke Ansichtsbreiten.
- Hochwärmedämmendes Holz-Aluminium-Fenstersystem auf Basis STRATOS
 Serie 510 mit speziell konzipiertem Einspannblendrahmen als Einsatzfenster vorgerichtet zum Einbau in P/R-Konstruktionen.
- Integrierte Absturzsicherung auf Anfrage möglich.
- Blendrahmen konzipiert für RAICO THERM⁺ P/R-Fassadensysteme mit verdecktliegendem Flügelprofil und integrierter Brüstungsverglasung IBV.
- Blendrahmenprofile aus Serie STRATOS verwendbar.
- Doppelfalzkonstruktion für hohe Systemsicherheit.
- Zubehörprogramm aus Standardsystemen verwendbar.

Blechbearbeitung Aluminium

Objektbezogene Blechfertigung und Kantteile nach Kundenwünschen. Umfangreiche Bearbeitungsmöglichkeiten mit modernen Maschinenpark für CNC-Frästechnik, stanzen, kanten, walzen, schweißen, schleifen u.v.m. bis zu einer Blechlänge von 4.000 mm. Lagerbestand von, 1,0 mm, 1,5 mm, 2,0 mm und 3,0 mm Blechstärke und einer Breite bis zu 1.250 mm. Technische Beratung und Umsetzung aller Arten von Kantungen, wie z. B. L-& Z-Kantungen, C-Kantungen, U-Kantungen, Tropfkanten, Bohrungslagen, Agraffen Verankerung mit Angaben für Schenkellängen, Radien etc. für:

- Gekantete Fensterbänke in Sonderformen und -maßen
- Innovative Attika-Blech- und Mauerabdeckungen inkl. Unterkonstruktion
- Individuelle Kantprofile zur Dachentwässerung
- Sturz- und Laibungsbleche
- Verkleidungen für Sonnenschutzanlagen
- Wandanschlussprofile
- Zeichnungsprofile nach Kundenvorgaben
- PECO-Bolzen

FENSTERBANK

Wir verbinden was zusammengehört!

Um durch Feuchtigkeit verursachte Bauschäden in Gewerk und Fassade zu vermeiden ist eine ideale Abdichtung unumgänglich. Unsere Systemlösungen überlassen nichts dem Zufall!

- PQS, die innovative Fensterbank mit System.
- Neu sind ja alle schön, doch echte Qualität sieht man erst nach Jahren.
- Geprüftes Gesamtsystem: Fensterbank und Holz-Alu-Fenster.

PREMIUMOBERFLÄCHEN

Hochwetterfeste Qualität. Garantiert!

- Chromfreie Premium Vorbehandlung mit SEASIDE Erweiterung nach QUALICOAT Richtlinie für alle HWF Oberflächen. Prozessoptimiertes Durchlaufverfahren ohne Zwischenlagerung nach der Vorbehandlung für eine optimale Haftung der Pulverbeschichtung.
- Hochwetterfeste Premiumoberflächen mit einer 10 Jahre Gewährleistung für Stückbeschichtung: Zertifizierung nach QUALICOAT und QUALIMARINE für eine lange Lebensdauer. Alle Beschichtungen erfüllen die Anforderungen der Klasse 2 an QUALICOAT. Für den Nachweis müssen die Oberflächen den "Florida-Bewitterungstest" über eine Dauer von drei Jahren (ca. 10 Jahre MEK) hinsichtlich Glanzgradabfall und Farbtonstabilität überstehen.
- Nachhaltigkeit für Pulverbeschichtungen, wie Umweltproduktdeklarationen (EPD), Green Building Label oder VOC's können bei vielen ausgewählten Oberflächen zur Verfügung gestellt werden.
- Vier eigene Großbeschichtungsanlagen mit sieben Kabinen für verlässliche Lieferzeiten z. B.:
- Vollautomatische Holzdekor-Paternosteranlage im Durchlaufverfahren
- Reinraum Beschichtungsanlage z.B. für flügelüberdeckende Türfüllungen
- Vertikal Anlage für Profillängen von bis zu 7.000 mm

SYSTEM-

2 4 2 1 E IAI -		200						Centurio		_		_	_
VERGLEICH	100	200	300	400	500	800	810	SD	_		Varianten		
im Detail	1		# # #	# # # # # # # # # # # # # # # # # # #									
DESIGN	1	R	F		R	61			ы	ь	ы	ы	61
Flächenversetzt			爲										
Flächenbündig													
Blockserie													
Setzholz- & Kämpferprofile	= / =	 	= / =	3 /	= / =	= / =	= / =	= /-	3 /	3 /			
Glastrennende Sprossenprofile Klebesprossen KONSTRUKTIONSVARIANTEN	3 / 3	3 / 3	3 / 3	3 / 3	3 / 3	3 / 3	-/	-/	3 / 3	3 / 3	3 / 3	3 /	
Äußere Blendrahmenanschlagdichtung	F	25	23	25	F	5 5		第 第	歸	15	歸		[25]
Einfachfalz							() () () () () () () () () ()						
Doppelfalz													
PREMIUM Fensterschiene													
SICHERHEIT			I		l	ı							
Einbruchschutz RC2		[EE]		題				題	題	題	題	舜	
Integrierte Absturzsicherung IBV VSG 17,52 mm													
Integrierte Absturzsicherung IBV VSG 25,52 mm													
ÖFFNUNGSVARIANTEN													
Festverglasung			爲		舞								
Dreh-(D)/Dreh-Kipp (DK) – Flügel	[65]	[53]	歸	[53]	5	歸	歸	歸	歸	歸	[1]		制
Kipp-vor-Dreh (KvD) – Flügel	歸	53	歸	53	歸	歸	5.3	5.3	5	53	6		
Stulpflügel	歸	53	歸	53	歸	歸	類	5.3	5	53	6		
Kippflügel	5 5	[52]	歸	[52]	時	歸	歸	時	歸	歸	5		嗣
Klappflügel	[#]	[EF]	歸	[EF]	舞	歸		題	歸		[64]	歸	嗣
Rundbogenelemente	5 5	F	5	F	5			5	歸	F			[55]
Hebe-Schiebe-(HS)-Element		[23]	[#3]										
Parallel-Abstell-Schiebe-Kipp (PASK) Elemente	F	[4]	[#3]	[4]	[#3]	[23]	歸	Ħ	F	53			5
Haustür (HT)	F						5.3						
Fassadeneinsatzelemente	F	[#3]	歸	[5]	F			Ħ					
BESCHLÄGE													
verdecktliegend													
sichtbar	題	題	題	題	題	題							
ZUBEHÖR													
Rolladenführungsprofile	哥	題	哥	哥	哥	哥							
Fensterbänke	題	E.	題		題	題							
Eckverbindung: Geschweißt (g) oder Mechanisch (m)	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m
Profilverbreiterungen		F	F	F	歸	F							

ECO

		S	TRATO	S		
200	300	400	500	510	700	Centurio
Ft 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	F. J. 7.	स्म मी त	E	나무 도권	F 16 July 1	
歸						
						5.3
3 / 3	3 / 3	3 / 3	3 / 3	3 / 3	> /-	= / -
3 / 3	E /	3 /	= / =	-/	-/	-/
	F		F	F		Ħ
100	100	183	100	153		1000

			題

語		5.3	53	5.3	5.3	5
						5.3
ECO 200	ECO 300					

1		[85]	1

	F					
g/m	g/m	g/m	g/m	g/m	g	g/m

	PREMIUM											
200	30	00	400	500	60	00	610	700				
FT 12												
			歸	料								
3 /	= /	 /-	3 /	= / =	3 / 3		= / =	/ -				
5 / 5	 	5 / 5	3 / 3	3 / 3	-/	-/		-/				

				5.3	無	5.3
調	調	調	嗣	題	題	[EF]

	7.5	7.5		**************************************		
			6.5			
					5.5	

	5 .5	5 .5	5.5	5.男	5.5	5.男	5.5	舞
						7.5		25
	5.3	5.3		# B	5.3	# <u>#</u>	5.3	53
2	5.3	5.3		# B	5.5	# B	5.3	53
	5	5	舞		5		舞	5 4
	5	5	舞		5		舞	5 4
	5		舞		5		舞	
ECO 200	ECO 300							
F	5	5	舞		5		舞	5
			F					

舞	#	舞	F F	舞	F	5 5	1
					題	5	

					題	題	歸	F .
	科	科			建		础	F .F.
g/m	g/m	g	g/m	g/m	g/m	g	BLR: g/m FLG: m	g
6 5	5		舞	歸	元	[62]	題	F .F.

nur auf Anfrage

RAICO Bautechnik GmbH

Gewerbegebiet Nord 2 87772 Pfaffenhausen Telefon +49 8265 911 0 Telefax +49 8265 911 100 E-Mail info@raico.de www.raico.de

RAICO France S.à.r.l.

8a rue Icare 67960 Entzheim

Téléphone +33 3 88784894 Téléfax +33 3 88782107 E-Mail info@raico.fr www.raico.fr

RAICO Austria

RAICO Bautechnik GmbH
Telefon +49 8265 911 0
Telefax +49 8265 911 100
E-Mail info@raico.at
www.raico.at

RAICO UK

Unit 27 Basepoint Business Centre Aerodrome Road Gosport, PO13 0FQ Phone +44 1329 848 175 Fax +44 1329 848 701 E-Mail info@raico.org.uk www.raico.eu

RAICO Swiss GmbH Delfterstrasse 10

5000 Aarau Telefon +41 62 738 66 00 Telefax +41 62 738 66 01 E-Mail info@raico.ch www.raico.ch

RAICO East

ul. Bolschaia Spasskaya 12 Office 8 129090 Moscow Phone +7 495 9951159 Fax +7 495 9951159 E-Mail info@raico.ru www.raico.ru